文章编号:1000-324X(2023)11-1301-08

DOI: 10.15541/jim20230170

Pd 纳米颗粒协同氧空位增强 TiO₂光催化 CO₂还原性能

贾鑫^{1,2},李晋宇^{1,2},丁世豪^{1,2},申倩倩^{1,2},贾虎生^{1,2},薛晋波^{1,2}

(太原理工大学 1. 新材料界面科学与工程教育部重点实验室; 2. 材料科学与工程学院, 太原 030024)

摘 要: 针对 TiO₂ 表面活性位点不足、反应动力学缓慢、CO₂还原产物中碳氢化合物的产率低以及选择性差等问题, 研究通过 Pd 催化氧还原法在缺氧环境中构筑了具有表面氧空位的一维单晶 TiO₂纳米带阵列(Pd-Ov-TNB)。通过形 貌结构、载流子行为及光催化性能分析,探究了表面氧空位和 Pd 的氢溢流效应对光生载流子分离传输及还原产物 选择性的影响。结果表明, Pd-Ov-TNB 的 CO₂还原活性强,产物中 CH₄、C₂H₆和 C₂H₄ 的产率分别为 40.8、32.09 和 3.09 µmol·g⁻¹·h⁻¹,碳氢化合物的选择性高达 84.52%,在 C-C 偶联方面展现出巨大的潜力。其一维单晶纳米带结 构提高了材料的活性比表面积和结晶度,为CO₂还原反应提供了更多的活性位点,并加速载流子的分离传输。同时, 氧空位增强了光生电荷的表面积累,为CO₂还原提供了富电子环境。此外,Pd 纳米颗粒提高反应体系中 H*的浓度, 并通过氢溢流效应将 H*转移到催化剂表面吸附 CO₂的活性位点,促进反应中间产物氢化。各种优势共同作用促使 CO₂向碳氢化合物高效转化。

关键 词:氧空位;TiO₂纳米带;氢溢流;光催化还原CO₂

中图分类号: TQ174 文献标志码: A

Synergy Effect of Pd Nanoparticles and Oxygen Vacancies for Enhancing TiO₂ Photocatalytic CO₂ Reduction

JIA Xin^{1,2}, LI Jinyu^{1,2}, DING Shihao^{1,2}, SHEN Qianqian^{1,2}, JIA Husheng^{1,2}, XUE Jinbo^{1,2}

(1. Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China; 2. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract: In this study, one-dimensional single-crystal TiO_2 nanobelt arrays with surface oxygen vacancies were constructed by Pd-catalyzed oxygen reduction method in anoxic environment to address the problems of insufficient surface active sites and slow reaction kinetics of TiO_2 , low yield and poor selectivity of hydrocarbons in CO_2 reduction products. The effects of surface oxygen vacancies and hydrogen spillover of Pd on the separation and transport of

收稿日期: 2023-04-06; 收到修改稿日期: 2023-06-26; 网络出版日期: 2023-07-17

基金项目:国家自然科学基金(62004137, 21878257, 21978196);山西省自然科学基金(20210302123102);山西省重点研发计划 项目(201803D421079);山西省高等学校科技创新项目(2019L0156);山西省回国留学人员科研资助项目(2020-050) National Natural Science Foundation of China (62004137, 21878257, 21978196); Natural Science Foundation of Shanxi Province (20210302123102); Key Research and Development Program of Shanxi Province (201803D421079); Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2019L0156); Research Project Supported by Shanxi Scholarship Council of China (2020-050)

作者简介:贾鑫(1995-),男,硕士研究生.E-mail: 547623834@qq.com

JIA Xin (1995-), male, Master candidate. E-mail: 547623834@qq.com

通信作者: 薛晋波, 副教授. E-mail: xuejinbo@tyut.edu.cn XUE Jinbo, associate professor. E-mail: xuejinbo@tyut.edu.cn

photogenerated carrier and the selectivity of reduction product were investigated from morphological structure, carrier behavior and photocatalytic performance. With high CO₂ reduction activity of Pd-Ov-TNB, yields of CH₄, C₂H₆ and C₂H₄ are 40.8, 32.09 and 3.09 μ mol·g⁻¹·h⁻¹, respectively, and selectivity of hydrocarbons is as high as 84.52%, showing great potential in C–C coupling. Its excellent photocatalytic activity is attributed to the one-dimensional single-crystal nanobelt structure that increases the active specific surface area and crystallinity of the material, provides more active sites for the CO₂ reduction and accelerates the segregated transport of photogenerated charges. Meanwhile, the oxygen vacancies enhance the surface accumulation of photogenerated charges, providing an electron-rich environment for CO₂ reduction. In addition, Pd nanoparticles increase concentration of H* in the reaction system, and then transfer H* to active sites of CO₂ adsorption on the catalyst surface through the hydrogen spillover effect, promoting the hydrogenation of reaction intermediates. Comprehensive advantages of Pd-nanoparticals contribute to the efficient conversion of CO₂ to hydrocarbons.

Key words: oxygen vacancies; TiO2 nanobelt; hydrogen spillover; photocatalytic CO2 reduction

过度消耗化石燃料和无节制地排放二氧化碳 (CO₂)加剧了全球环境危机^[1]。光催化还原 CO₂ (PRC) 以太阳能为能量输入源,通过模拟光合作用,将空 气中的 CO₂ 直接转化成 CO、CH₄等高附加值化学 品,是实现碳中和目标的重要策略。然而,CO₂分子 线性排列的 C=O 具有很强的键能(750 kJ·mol⁻¹),使 其很难在催化剂表面活化^[2]。此外,CO₂还原反应过 程涉及多质子-电子耦合,为 CO₂ 有效光还原带来 巨大挑战^[3-4]。因此,设计和开发能够有效吸附与活 化 CO₂ 的光催化剂,对高效分离光诱导电荷以提高 CO₂ 还原性能具有重要意义。在众多光催化材料中, TiO₂ 因化学稳定性好、成本低廉等优点而应用广泛。 但其禁带宽度较大、表面活性低以及电子--空穴复合 率高,极大地延缓了催化剂表面反应动力学,进而 影响其 PRC 性能^[5]。

TiO₂的光催化反应通常发生在表面活性中心, 构建一维纳米带通常可以暴露较大的活性比表面积, 有利于表面氧化还原反应^[6]。此外,通常认为 TiO2 样品的结晶度对于光催化活性具有较大影响。因为 结晶性差的结构中往往含有大量缺陷、这些缺陷会 成为电子--空穴对的复合中心^[7]。Bunsho 等^[8]发现非 晶态 TiO2 在光催化反应中只表现出微弱的活性, 这 是由于大量的结构缺陷导致电子--空穴对复合严重。 一般来说, 热处理后材料的晶粒尺寸和结晶度会增 加、但同时导致比表面积减小和表面羟基化程度降 低^[9]。光催化效率取决于材料的许多性质,如组成、 结晶度、形貌和比表面积^[7]。因此,从光催化角度考 虑,所制备的材料需要兼具大的比表面积和高的结 晶性, 而此两者在材料制备过程中往往难以兼得。 合成一维单晶纳米带可以有效解决这一矛盾, 既提 高材料的比表面积, 又具有高的结晶度。同时, 单晶

结构避免了因晶界处界面态形成的电荷复合中心, 从而有效促进光生电荷的分离和传输^[10]。

目前,含有氧空位(Ov)缺陷的 TiO₂在 PRC 研究 中受到了广泛关注。一方面,在 TiO₂ 晶格中引入 Ov 可以改变其固有的电子特性,并且可以充当电 子俘获位点,增强光生电荷分离^[11];另一方面, TiO₂的表面缺陷可为吸附与活化 CO₂提供更多的活 性位点,在促进 CO₂还原反应热力学方面显现出巨 大的优越性^[12]。Ji 等^[13]利用第一性原理计算证明, 在 PRC 过程中,CO₂分子与缺陷表面 Ov 之间的亲和 力可以极大降低脱氧过程的势垒。Zhang 等^[14]发现 TiO_{2-x}纳米颗粒中存在与 Ti/O 空位相关的浅电荷陷 阱,促使光生电荷有效分离和转移。Gao 等^[15-16]通 过研究不同浓度与分布的 Ov 缺陷对黑色 TiO₂ 理化 性质的影响,全面提升了黑色 TiO₂的光响应、电荷 传输行为以及催化活性等性能。

然而,以上策略大多侧重于 CO₂的活化,而 H₂O 分子的作用往往被忽视。H₂O 分子在催化剂 表面解离产生 OH⁻和活性 H*,其中 OH⁻物种会 消耗光生空穴,H*则迁移到吸附 CO₂的活性中心, 驱动质子-电子耦合转移过程^[17]。包括 Pd、Pt 在内的 金属助催化剂可加速 H₂O 分解,提高反应体系中 H* 的覆盖率,并通过氢溢流效应将 H*迁移到吸附 CO₂ 的活性部位,极大地提高其中间产物进一步质子化的 潜力,从而改善 CO₂还原性能^[18]。

基于上述考虑,本研究通过Pd催化氧还原法在 缺氧环境中构筑了富含表面 Ov 缺陷的一维单晶 TiO₂ 纳米带阵列(Pd-Ov-TNB),探究表面 Ov 与 Pd 纳米颗粒的氢溢流效应对 TiO₂ 基光催化材料光吸 收、载流子行为以及光催化性能的调控机制,为开 发高效 CO₂转换光催化剂提供思路。

1 实验方法

1.1 制备方法

采用文献的水热法制备 Pd 纳米颗粒(Pd NPs)。 将 20.6 mg 产物分散在 7 mL 无水乙醇中。尺寸为 30 mm×10 mm×0.2 mm 的工业纯钛片经酸洗液 (V(HNO₃):V(HF):V(H₂O)=3:1:16)处理,再用丙酮 和无水乙醇超声清洗,去除表面杂质。之后钛片在 空气气氛、300 ℃管式炉中退火 30 min、制得预氧 化层, 以防止 Ti⁴⁺扩散速率过快, 包裹表面涂覆的 Pd NPs, 或者与 Pd NPs 形成合金或金属间化合物, 从而丧失 Pd 的催化活性。将 0.3 mL Pd NPs 溶液通 过旋涂法均匀涂覆到预氧化处理的钛片表面。之后 在氩气(Ar)气氛、800 ℃管式炉中退火4h,升温速 率为3 ℃/min, 得到富含表面 Ov 的一维单晶 TiO₂ 纳米带阵列, 记为 Pd-Ov-TNB。将 Pd-Ov-TNB 样品 进一步在 400 ℃空气气氛中退火 2 h, 以消除表面 的 Ov, 记为 Pd-TNB。将 Pd-Ov-TNB 样品置于硝酸 溶液中浸泡,随后用去离子水彻底清洗,并干燥以 去除样品表面的 Pd NPs, 记为 Ov-TNB。

1.2 催化剂表征和性能测试

采用场发射扫描电子显微镜(FESEM, JEOL, JSM-6700F)和透射电子显微镜(HRTEM, JEOL, JEM-2100F)表征样品的微观形貌。利用X射线衍射 仪(XRD, Rigaku, Smartlab)、X射线光电子能谱仪 (XPS, Thermo Fisher, EscaLab 250Xi)以及电子顺磁 共振波谱仪(EPR, Bruker E500, GER)表征结构和元 素。采用荧光光谱仪(PL, Edinburgh Instruments, LFS-920)、表面光电压谱仪(SPV)和电化学工作站 (Metrohm, AUTOLAB-PGSTAT30)表征载流子迁移 行为。光源为300 W 氙灯(PerfectLight, PLS-SXE300) 提供辐照密度为400 mW·cm⁻²的光强。采用可视光 催化反应器(西安泰康仪器, WCGF-25 mL)还原CO₂, 并利用气相色谱仪(Agilent, 8890)检测反应产物。

2 结果与讨论

2.1 形貌与结构表征

图 1(a~c)为 Pd-Ov-TNB、Pd-TNB 及 Ov-TNB 的 SEM 照片。所有样品都呈现出纳米带形貌,并且

图 1 (a, e) Pd-Ov-TNB、(b, f) Pd-TNB 和(c, g) Ov-TNB 的(a~c)SEM 照片、(e~g)EDS 图谱、 (h) XRD 图谱和(i) EPR 图谱; (d) Pd-Ov-TNB(a)中虚线框位置的 EDS 点分析图谱 c) SEM images (a, g)EDS spectra (b) XPD patterns and (i) EPP spectra of (a, a) Pd Ov TNP, (b, f) Pd J

Fig. 1 (a-c) SEM images, (e-g)EDS spectra, (h) XRD patterns and (i) EPR spectra of (a, e) Pd-Ov-TNB, (b, f) Pd-TNB and (c, g) Ov-TNB; (d) Analytical mapping of EDS point of square area in (a)

Pd-Ov-TNB 和 Pd-TNB 中纳米带的顶端存在纳米粒 子,如图1(a,b)中虚线圈所示。对图1(a)中方框位置 的纳米颗粒进行 EDS 点扫分析, 谱图中出现 Pd 的 特征峰(图 1(d)), 表明该粒子为 Pd NPs。Pd-Ov-TNB、Pd-TNB 的 EDS 面扫描出现 Ti、O、Pd 的特 征峰,同时观察到 Pd 的相对含量很低(图 1(e, f))。 相比之下, Ov-TNB 顶端未出现纳米颗粒, EDS 结果 只出现 Ti 和 O 元素的特征峰(图 1(g)), 表明经硝酸 处理成功去除 Pd NPs。图 1(h)为样品的 XRD 图谱, 所有衍射峰都符合金红石型 TiO2 的特征(PDF 75-1748), 此外, 还观察到少量归属于 Ti 基底的衍 射峰(PDF 44-1294)。XRD 图谱中并未观察到属于 Pd 的特征峰, 这可能是由于 Pd NPs 的含量过低所致。 图 1(i)为样品的 EPR 图谱, 由于 Ov、Pd-Ov-TNB 和 Ov-TNB 样品在 g=2.001 处出现显著的 EPR 信号^[20]。 Ov-TNB 样品的 EPR 信号比 Pd-Ov-TNB 略强,表明 去除 Pd 纳米颗粒不可避免地会在 TiO2 纳米带表面 形成新的结构缺陷,导致 Ov-TNB 中的氧缺陷浓度 更高。此外, 在 Pd-TNB 中没有检测到 EPR 信号, 表 明空气中二次退火处理成功修复了氧空位缺陷。

图 2(a)为 Pd-Ov-TNB 的 TEM 照片,其中纳米 带顶端存在明显的纳米颗粒。同时,HRTEM 照片的 晶格条纹对应于金属 Pd(111)晶面(图 2(b)),表明纳 米带顶端的金属颗粒为 Pd NPs,与 SEM 分析结果 一致。图 2(c)为纳米带部位的 HRTEM 照片,0.33 和 0.23 nm 的晶格间距对应金红石型 TiO₂ 的(110)和 (111)晶面。结合选区电子衍射(SAED)图案(图 2(d)), 表明制备的 TiO₂纳米带为单晶结构,且其生长方向 沿[001]晶向。此外,图 2(c)中纳米带表面存在明显 的无序层,进一步表明样品表面存在 Ov 缺陷。

图 3 是 Pd-Ov-TNB、Pd-TNB 和 Ov-TNB 的 XPS 图谱。XPS 全谱中检测到了 Ti、O、C 三种元素, 如 图 3(a)所示。对于 Pd-TNB 和 Pd-Ov-TNB 样品, 全 谱中并未检测到 Pd 元素的特征峰, 其原因可能是

图 2 (a) Pd-Ov-TNB 的 TEM 照片; (b) 图(a)中方框部位的 HRTEM 照片; (c) 纳米带部位的 HRTEM 照片; (d) 纳米带的 选区电子衍射图

Fig. 2 (a) TEM image of Pd-Ov-TNB; (b) HRTEM image of rectanglar area in Fig.(a); (c) HRTEM image and (d) SAED pattern of the nanobelt

图 3 (a) Pd-Ov-TNB、Ov-TNB 以及 Pd-TNB 的 XPS 全谱; (b) O1s、(c) Ti2p 和(d) Pd3d 的高分辨 XPS 图谱 Fig. 3 (a) XPS full survey spectra of Pd-Ov-TNB, Ov-TNB and Pd-TNB, with corresponding high-resolution XPS spectra of (b) O1s, (c) Ti2p and (d) Pd3d

样品表面的 Pd NPs 含量少所致。图 3(b)为各个样品 的 O1s XPS 图谱, 529.7 和 531.8 eV 处的结合能峰分 别对应 Ti-O-Ti 表面晶格氧(OL)和 Ti-OH 表面羟基 (O_H)。通常,有缺陷的氧位点可能与氢原子结合并 局部形成表面羟基、因此、Ti-OH 峰的相对强度是 判断 Ov 是否存在的重要标准^[21]。Pd-Ov-TNB 和 Ov-TNB O1s 谱图中 O_H的峰面积大于 Pd-TNB, 表明 样品表面存在 Ov 缺陷, 与图 1(i)以及图 2(c)中分析结 果一致。各个样品的高分辨 Ti2p XPS 图谱如图 3(c) 所示, 458.5 和 464.2 eV 处的结合能峰分别对应于 Ti⁴⁺2p_{3/2}和Ti⁴⁺2p_{1/2}。Pd-Ov-TNB和Ov-TNB样品中, Ov 使Ti2p 峰相对于Pd-TNB 向低结合能方向偏移^[22]。 图 3(d)是各个样品的高分辨 Pd3d XPS 图谱, 336.8、 342.2、337.8 和 343.3 eV 处的结合能分别对应于 金属 Pd 的 3d5/2、3d3/2 和 PdO 中 Pd²⁺的 3d5/2、 3d_{3/2}^[23]。在 Ov-TNB 中并没有观察到对应于 Pd 物 种的特征峰。

2.2 光催化还原 CO₂性能研究

图 4(a)和表 1 展示了所有样品的 PRC 性能。所 制备光催化剂的主要还原产物是 CO、CH₄、C₂H₆、 C₂H₄和 H₂。其中, Pd-Ov-TNB 还原产物中碳氢化合 物的产量最高, CH₄、C₂H₆和 C₂H₄的产率分别达到 40.80、32.09和 3.09 μ mol·g⁻¹·h⁻¹,同时观察到产物 中高附加值 C₂还原产物的含量较高,说明所制备的 催化剂在光催化 C-C 偶联方面拥有巨大潜力。采用 公式(1)评估选择性

Selectivity = $[8v(CH_4) + 14v(C_2H_6) + 12v(C_2H_4)]/$ $[2v(CO) + 8v(CH_4) + 14v(C_2H_6) +$ $12v(C_2H_4) + 2v(H_2)] \times 100\%$ (1)

其中, v(C₂H₆)、v(C₂H₄)、v(CH₄)、v(CO)和 v(H₂)分

别表示 C₂H₆、C₂H₄、CH₄、CO 和 H₂的反应速率。 计算得出该样品还原产物中碳氢化合物的选择性高 达 84.52%。相较于 Pd-Ov- TNB, Ov-TNB 的还原产 物以 CO 为主,碳氢化合物的选择性仅为 39.14%。 这表明引入 Pd 可以加速 H₂O 分解, 致使 Pd NPs 周 围的 H*浓度高于催化剂的其它部位,由于浓度梯 度,这些H*势必会溢流到吸附CO2的活性位点,促 进更加复杂的质子-电子耦合反应,从而使还原产 物中碳氢化合物的比例明显升高。而 Pd-TNB 的碳 氢化合物的选择性依然低于 Pd-Ov-TNB, 同时氢气 产率较高(10.04 µmol·g⁻¹·h⁻¹)。这主要是由于 CO₂ 吸 附是还原反应的前提, 去除 Ov 会减少 CO2吸附活 性位点,导致更多 H*自结合产生氢气。同时,消除 Ov 可能会降低催化剂中光生电子-空穴分离效率, 致使还原反应中质子-电子耦合动力不足。此外, 测 试 Pd-Ov-TNB 催化活性的稳定性, 如图 4(b)所示。 四次循环后, CH4和 C2H6的产率没有明显下降, 光 催化剂的稳定性良好。表 2 为文献报道的同类型半 导体光催化还原 CO2 性能^[24-32], 其中, 本研究设计 的材料 Pd-Ov-TNB 在 CO2 还原效率以及碳氢产物 的选择性方面都具有较大的优势,并且该催化剂具 有成本低廉,循环性能稳定等优点。

2.3 光电化学性能评价

本研究系统探索了催化剂的光吸收特性、载流 子的分离与传输机制,以揭示 Pd-Ov-TNB 还原 CO₂ 的机理。

图 5(a)为所有样品的紫外-可见漫反射光谱图 (UV-vis DRS)。410 nm 处的光吸收属于金红石型 TiO₂固有的带间跃迁,而 Pd-Ov-TNB 和 Ov-TNB 的 光吸收发生红移,表明引入 Ov 影响了 TiO₂的能带

Colorful figures are available on website

Table 1 Activities and selectivities for photocatalytic reduction of CO ₂ over the obtained samples									
Photocatalyst		Selectivity for							
	СО	CH_4	C_2H_6	C_2H_4	H_2	hydrocarbon products/%			
Pd-Ov-TNB	70.7	40.8	32.09	3.09	3.69	84.52			
Pd-TNB	80.21	19.92	10.71	2.02	10.04	64.88			
Ov-TNB	113.58	15.32	2.071	0	4.25	39.14			

表 1 样品的光催化还原 CO₂的活性和选择性

表 2 文献报道的光催化剂的 CO₂还原性能

 Table 2 Photocatalytic performance of CO₂ reduction of photocatalysts in literature

Photocatalyst		Product	tivity / (µmol	Selectivity for	Paf		
Thotocatalyst	СО	CH_4	C_2H_6	C_2H_4	H_{2}	hydrocarbon products/%	Kel.
Pd-Ov-TNB	70.7	40.8	32.09	3.087	3.69	84.52	This work
1%Ru-TiO _{2-x}	5.06	31.36	-	-	-	96.12	[24]
In-TiO ₂	81	244	2.78	0.06	-	92.48	[25]
$In-TiO_2/g-C_3N_4$	2.32	7.31	-	1.41	-	94.20	[26]
Au_6Pd_1/TiO_2	10.9	12.7	0.8	0.7	-	84.75	[27]
Cu^{δ^+}/CeO_2 -TiO ₂	3.47	1.52	-	4.51	-	90.52	[28]
Pd/Mn-TiO ₂	17.88	5.51	1.32	-	-	55.21	[29]
PdNRs-TiO ₂	12.6	3.0	-	-	8.826	35.90	[30]
$Ti_3C_2/P25$	11.74	16.61	-	-	35.0	58.70	[31]
ZXN-TC	1296.4	98.11	41.07	2.25	_	34.85	[32]

图 5 Pd-Ov-TNB、Ov-TNB 和 Pd-TNB 的(a) UV-Vis DRS 光谱图、(b) PL 光谱图、(c) SPV 光谱图、 (d) *I-t* 曲线、(e) EIS 阻抗谱图和(f) 莫特-肖特基曲线 Fig. 5 (a) UV-Vis DRS spectra, (b) PL emission spectra, (c) SPV spectra, (d) *I-t* curves, (e) EIS plots, and (f) Mott-Schottky plots of Pd-Ov-TNB, Ov-TNB and Pd-TNB

结构, 光吸收范围得到有效拓宽。图 5(b)为不同样 品的光致发光(PL)光谱。当激发波长为 250 nm 时, 所有样品在 470 nm 处的光谱信号对应于 TiO₂的缺 陷能级^[33]。Pd-Ov-TNB 的荧光猝灭最强, 这是由于 Ov 作为电荷陷阱, 阻碍了电子和空穴复合, Pd NPs

同时驱动光生电荷迁移,从而延长了载流子寿命。 图 5(c)为所制备催化剂的表面光电压(SPV)谱图,所 有样品都表现出正的光伏响应信号,这是 n 型半导 体的特性^[34]。Pd-Ov-TNB 的 SPV 响应最大,这是由 于表面 Ov 可束缚光生电子,促使光生电荷转移至 催化剂表面。同时, Pd NPs 增强了 TiO₂纳米带向 Pd 表面的电荷转移, 进一步促进光生载流子的表面迁移。PL 结合 SPV 分析表明, Pd NPs 和表面 Ov 可以增强光生电荷的表面积累, 促进催化剂表面反应。

图 5(d)为不同样品的光电流密度-时间曲线。 Pd-Ov-TNB显示出最强的光电流响应,这归因于 Pd NPs 与 Ov 可驱动催化剂内部载流子的高效分离与 表面迁移。不同样品的电化学阻抗谱(EIS)如图 5(e) 所示。Pd-Ov-TNB 的 Nyquist 曲线半径最小,表明 其界面电荷转移电阻最小,光生电荷复合速率最 低。样品的莫特-肖特基曲线如图 5(f)所示, Pd-Ov-TNB 的曲线斜率最小,说明催化剂中电子密 度上升,费米能级提高,这有利于电荷转移^[35]。基 于上述分析, Pd NPs 和 Ov 可驱动光生电子-空穴有 效分离,促使更多载流子参与氧化还原反应,提升 PRC 效率。

2.4 光催化还原 CO₂机理

通过上述分析, Pd-Ov-TNB 的 PRC 机制可以总 结如下(图 6)。一维单晶结构为 CO₂ 的吸附和活化提 供了更多的活性位点,并加速载流子的转移。当受到 光激发时, TiO₂ 纳米带会产生大量光生电荷,表面 Ov 迅速捕获光生电子,进一步转移到吸附的 CO₂ 上促进其活化。此外, Pd NPs 增强了 TiO₂ 纳米带向 其表面的电荷转移,促进 H₂O 分子解离成 H*, H*随 后通过氢溢流效应迁移到 CO₂ 吸附位点。Ov 捕获 积累光生电荷以及 Pd NPs 的氢溢流效应为 CO₂还 原提供了富电子环境和更多的活性 H*,促进反应中 间产物进一步氢化,两者协同提升了催化剂的 PRC 性能。

图 6 Pd-Ov-TNB 光催化还原 CO₂ 机制 Fig. 6 Photocatalytic CO₂ reduction mechanism of Pd-Ov-TNB

3 结论

本研究通过 Pd 催化氧还原法在缺氧环境中制备

了具有表面 Ov 缺陷的一维单晶 TiO₂ 纳米带阵列 (Pd-Ov-TNB),用于光催化还原 CO₂。研究表明, Pd-Ov-TNB 表现出最优异的 CO₂转化能力, CH₄、 C₂H₆和 C₂H₄的产率分别达到 40.8、32.09和 3.09 µmol·g⁻¹·h⁻¹,碳氢化合物的选择性高达 84.52%。光催化性能提升归因于一维单晶结构为吸 附和活化 CO₂提供了更多的活性位点,有利于加速 载流子转移。表面 Ov 与 Pd NPs 促进了光生电荷的 有效分离以及表面积累,为高效还原 CO₂提供了富 电子环境。同时, Pd NPs 的氢溢流效应通过提升反 应体系中 H*的浓度,促进反应中间产物进一步氢 化。各项优势共同作用促使 CO₂ 向碳氢化合物高效 转化。

参考文献:

- [1] SHEN Q Q, XUE J B, LI Y, et al. Construction of CdSe polymorphic junctions with coherent interface for enhanced photoelectrocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2021, 282: 119552.
- [2] LI C J, XUE Y, ZHOU X X, et al. BiZn_x/Si photocathode: preparation and CO₂ reduction performance. *Journal of Inorganic Materials*, 2022, **37(10)**: 1093.
- [3] XU S Z, CARTER E A. Theoretical insights into heterogeneous (photo) electrochemical CO₂ reduction. *Chemical Reviews*, 2019, 119(11): 6631.
- [4] PANG Q H, LIAO G F, HU X Y, et al. Porous bamboo charcoal/ TiO₂ nanocomposites: preparation and photocatalytic property. *Journal of Inorganic Materials*, 2019, **34(2)**: 219.
- [5] HAO L, HUANG H W, ZHANG Y H, et al. Oxygen vacant semiconductor photocatalysts. Advanced Functional Materials, 2021, 31(25): 2100919.
- [6] VERBRUGGEN A W, MASSCHAELE K, MOORTGAT E, et al. Factors driving the activity of commercial titanium dioxide powders towards gas phase photocatalytic oxidation of acetaldehyde. Catalysis Science & Technology, 2012, 2: 2311.
- [7] KERI Q, KOCSIS E, KARAJZ D A, *et al.* Photocatalytic crystalline and amorphous TiO₂ nanotubes prepared by electrospinning and atomic layer deposition. *Molecules*, 2021, 26(19): 5917.
- [8] BUNSHO O, YOSHIMASA O, SEIICHI N. Photocatalytic activity of amorphous anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. *Journal of Physical Chemistry B*, 1997, **101**(19): 3746.
- [9] BELLARDITA M, PAOLA A D, MEGNA B, et al. Absolute crystallinity and photocatalytic activity of brookite TiO₂ samples. *Applied Catalysis B: Environmental*, 2017, 201: 150.
- [10] WANG S Q, ZHANG Z L, HUO W Y, et al. Preferentially oriented Ag-TiO₂ nanotube array film: an efficient visible-light-driven photocatalyst. Journal of Hazardous Materials, 2020, **399:** 123016.
- [11] DENG Z S, JI J H, XING M Y, et al. The role of oxygen defects in metal oxides for CO₂ reduction. *Nanoscale Advances*, 2020, 2: 4986.
- [12] JIANG W B, LOH H Y, LOW B Q L, et al. Role of oxygen vacancy in metal oxides for photocatalytic CO₂ reduction. Applied Catalysis B: Environmental, 2023, **321**: 122079.
- [13] JI Y F, LUO Y. New mechanism for photocatalytic reduction of CO₂ on the anatase TiO₂(101) surface: the essential role of oxygen vacancy. *Journal of the American Chemical Society*, 2016, **138(49)**: 15896.

- [14] ZHANG T, LOW J X, YU J G, et al. A blinking mesoporous TiO_{2-x} composed of nanosized anatase with unusually long-lived trapped charge carriers. *Angewandte Chemie International Edition*, 2020, 59(35): 15000.
- [15] GAO J Q, SHEN Q Q, GUAN R F, et al. Oxygen vacancy selfdoped black TiO₂ nanotube arrays by aluminothermic reduction for photocatalytic CO₂ reduction under visible light illumination. *Journal of CO₂ Utilization*, 2020, **35**: 205.
- [16] GAO J Q, XUE J B, JIA S F, et al. Self-doping surface oxygen vacancy-induced lattice strains for enhancing visible light-driven photocatalytic H₂ evolution over black TiO₂. ACS Applied Materials & Interfaces, 2021, **13(16)**: 18758.
- [17] WANG Y Y, QU Y, QU B H, et al. Construction of six-oxygencoordinated single Ni sites on g-C₃N₄ with boron-oxo species for photocatalytic water-activation-induced CO₂ reduction. Advanced Materials, 2021, 33(48): 2105482.
- [18] WANG Z Q, ZHU J C, ZU X L, et al. Selective CO₂ photoreduction to CH₄ via Pd^{δ+}-assisted hydrodeoxygenation over CeO₂ nanosheets. Angewandte Chemie International Edition, 2022, 61(30): e202203249.
- [19] ZHANG W J, SHEN Q Q, XUE J B, et al. Preparation and photoelectrochemical water oxidation of hematite nanobelts containing highly ordered oxygen vacancies. *Journal of Inorganic Materials*, 2021, **36(12):** 1290.
- [20] WANG L L, YANG T, PENG L J, et al. Dual transfer channels of photo-carriers in 2D/2D/2D sandwich-like ZnIn₂S₄/g-C₃N₄/Ti₃C₂ MXene S-scheme/Schottky heterojunction for boosting photocatalytic H₂ evolution. *Chinese Journal of Catalysis*, 2022, 43: 2720.
- [21] CAI S C, CHEN J, LI Q, et al. Enhanced photocatalytic CO₂ reduction with photothermal effect by cooperative effect of oxygen vacancy and Au cocatalyst. ACS Applied Materials & Interfaces, 2021, 13(12): 14221.
- [22] XIANG Q J, LÜ K L, YU J G. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO₂ nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. *Applied Catalysis B: Environmental*, 2010, **96(3/4):** 557.
- [23] MANIVANNAN S, AN S, JEONG J, et al. Hematite/M (M=Au, Pd) catalysts derived from a double-hollow Prussian blue microstructure: simultaneous catalytic reduction of o- and p-nitrophenols. ACS Applied Materials & Interfaces, 2020, 12(15): 17557.
- [24] ZHOU Y M, ZHANG Q X, SHI X L, *et al.* Photocatalytic reduction of CO₂ into CH₄ over Ru-doped TiO₂: synergy of Ru and

oxygen vacancies. *Journal of Colloid and Interface Science*, 2022, **608:** 2809.

- [25] TAHIR M, AMIN N S. Indium-doped TiO₂ nanoparticles for photocatalytic CO₂ reduction with H₂O vapors to CH₄. *Applied Catalysis B: Environmental*, 2015, **162:** 98.
- [26] PARK J, LIU H, PIAO G X, et al. Synergistic conversion of CO₂ into C₁ and C₂ gases using hybrid In-doped TiO₂ and g-C₃N₄ photocatalysts. *Chemical Engineering Journal*, 2022, 437: 135388.
- [27] CHEN Q, CHEN X J, FANG M L, et al. Photo-induced Au-Pd alloying at TiO₂ {101} facets enables robust CO₂ photocatalytic reduction into hydrocarbon fuels. *Journal of Materials Chemistry A*, 2019, **7**: 1334.
- [28] WANG T, CHEN L, CHEN C, *et al.* Engineering catalytic interfaces in $Cu^{\delta+}/CeO_2$ -TiO₂ photocatalysts forsynergistically boosting CO₂ reduction to ethylene. *ACS Nano*, 2022, **16**(2): 2306.
- [29] CAO C, YAN Y B, YU Y L, et al. Modification of Pd and Mn on the surface of TiO₂ with enhanced photocatalytic activity for photoreduction of CO₂ into CH₄. The Journal of Physical Chemistry C, 2017, **121(1)**: 270.
- [30] ZHU Y Z, XU Z X, JIANG W Y, et al. Engineering on the edge of Pd nanosheet cocatalysts for enhanced photocatalytic reduction of CO₂ to fuels. *Journal of Materials Chemistry A*, 2017, 5: 2619.
- [31] YE M H, WANG X, LIU E Z, et al. Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surfacealkalinized titanium carbide MXene as cocatalyst. *ChemSusChem*, 2018, **11(10):** 1606.
- [32] NI B X, JIANG H, GUO W Y, et al. Tailoring the oxidation state of metallic TiO through Ti³⁺/Ti²⁺ regulation for photocatalytic conversion of CO₂ to C₂H₆. *Applied Catalysis B: Environmental*, 2022, **307:** 121141.
- [33] ASCHAUER U, PFENNINGER R, SELBACH S M, et al. Straincontrolled oxygen vacancy formation and ordering in CaMnO₃. *Physical Review B*, 2013, 88(5): 054111.
- [34] LIU Q Q, HE X D, PENG J J, et al. Hot-electron-assisted Sscheme heterojunction of tungsten oxide/graphitic carbon nitride for broad-spectrum photocatalytic H₂ generation. *Chinese Journal* of Catalysis, 2021, 42(9): 1478.
- [35] YANG T, DENG P K, WANG L L, et al. Simultaneous photocatalytic oxygen production and hexavalent chromium reduction in Ag₃PO₄/C₃N₄ S-scheme heterojunction. Chinese Journal of Structural Chemistry, 2022, 41(6): 2206023.